Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes
نویسندگان
چکیده
Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following “curve-fitting” problem over a field F : Given n points f(xi:yi)gni=1, xi; yi 2 F , and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that yi = p(xi) for all but at most e values of i 2 f1; : : : ; ng. We give an algorithm that solves this problem for e < n pkn, which improves over the previous best result [22], for every choice of k and n. Of particular interest is the case of k=n > 13 , where the result yields the first asymptotic improvement in four decades [15]. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometric codes. In both cases, we obtain a list decoding algorithm that corrects up to n pn(n d0) errors, where n is the block length and d0 is the designed distance of the code. The improvement for the case of algebraic-geometric codes extends the methods of [19] and improves upon their bound for every choice ofnandd0. We also present some other consequences of our algorithm including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed-Solomon codes.
منابع مشابه
Efficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes
A list decoding for an error-correcting code is a decoding algorithm that generates a list of codewords within a Hamming distance from the received vector, where can be greater than the error-correction bound. In [18], a list-decoding procedure for Reed–Solomon codes [19] was generalized to algebraic–geometric codes. A recent work [8] gives improved list decodings for Reed–Solomon codes and alg...
متن کاملA Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes
This paper presents an algorithmic improvement to Sudan’s list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman. Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspon...
متن کاملA Displacement Structure Approach to List Decoding of Reed-Solomon and Algebraic-Geometric Codes∗
Using the method of displacement we shall develop a unified framework for derivation of efficient list decoding algorithms for algebraic-geometric codes. We will demonstrate our method by accelerating Sudan’s list decoding algorithm for Reed-Solomon codes [22], its generalization to algebraicgeometric codes by Shokrollahi and Wasserman [21], and the recent improvement of Guruswami and Sudan [8]...
متن کاملA general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملA Displacement Approach to Decoding Algebraic Codes
Using methods originating in numerical analysis, we will develop a uni ed framework for derivation of eÆcient algorithms for decoding several classes of algebraic codes. We will demonstrate our method by accelerating Sudan's list decoding algorithm for Reed-Solomon codes [22], its generalization to algebraic-geometric codes by Shokrollahi and Wasserman [21], and the improvement of Guruswami and...
متن کامل